Single-Particle Spectroscopic Study on Fluorescence Enhancement by Plasmon Coupled Gold Nanorod Dimers Assembled on DNA Origami.

نویسندگان

  • Taishi Zhang
  • Nengyue Gao
  • Shuang Li
  • Matthew J Lang
  • Qing-Hua Xu
چکیده

Metal-enhanced fluorescence has attracted much attention due to its scientific importance and lots of potential applications. Plasmon coupled metal nanoparticles have been demonstrated to further improve the enhancement effects. Conventional studies of metal-enhanced fluorescence on the bulk systems are complicated by the ensemble average effects over many critical factors with large variations. Here, fluorescence enhancement of ATTO-655 by a plasmon coupled gold nanorod dimer fixed on a DNA origami nanobreadboard was studied on the single-particle level. A series of gold nanorod dimers with linear orientation and different gap distances ranging from 6.1 to 26.0 nm were investigated to explore the plasmon coupling effect on fluorescence enhancement. The results show that the dimer with the smallest gap (6.1 nm) gives the highest enhancement (470-fold), and the enhancement gradually decreases as the gap distance increases and eventually approaches that from a monomer (120-fold). This trend is consistent with the numerical calculation results. This study indicates that plasmon coupling in gold nanorod dimers offers further increased excitation efficiency to achieve large fluorescence enhancement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tunable optical activity of plasmonic dimers assembled by DNA origami.

We investigate the optical response of gold nanorod (AuNR) dimers assembled in parallel on a DNA origami template. Plasmonic circular dichroism (CD) was found to be highly dependent on the orientation of the dimers relative to the DNA axis and the inter-rod distances. Dipole-dipole distances play a critical role in the induced plasmonic chirality. The orientation dependence of induced CD was fu...

متن کامل

Universal scaling and Fano resonance in the plasmon coupling between gold nanorods.

The plasmon coupling between metal nanocrystals can lead to large plasmon shifts, enormous electric field enhancements, and new plasmon modes. Metal nanorods, unlike spherical ones, possess a transverse and a longitudinal plasmon mode owing to their geometrical anisotropy. Consequently, the plasmon coupling between metal nanorods is much more complicated than that between nanospheres. For the l...

متن کامل

An ultrasensitive near-infrared satellite SERS sensor: DNA self-assembled gold nanorod/nanospheres structure

Coupled plasmonic assemblies have recently attracted tremendous research interest in the field of Surface Enhanced Raman Scattering (SERS) due to their unique optical and biocompatible properties. Using DNA to connect different parts of assembled plasmonic nanostructures has been a simple but useful method to achieve the expected nanocomposites. This work prepared a satellite SERS substrate bas...

متن کامل

Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami.

We study the distance-dependent quenching of fluorescence due to a metallic nanoparticle in proximity of a fluorophore. In our single-molecule measurements, we achieve excellent control over structure and stoichiometry by using self-assembled DNA structures (DNA origami) as a breadboard where both the fluorophore and the 10 nm metallic nanoparticle are positioned with nanometer precision. The s...

متن کامل

Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods.

Enhancing the fluorescence of a weak emitter is important to further extend the reach of single-molecule fluorescence imaging to many unexplored systems. Here we study fluorescence enhancement by isolated gold nanorods and explore the role of the surface plasmon resonance (SPR) on the observed enhancements. Gold nanorods can be cheaply synthesized in large volumes, yet we find similar fluoresce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry letters

دوره 6 11  شماره 

صفحات  -

تاریخ انتشار 2015